
A Data Model and Query Language
for Distributed Service Discovery

Wolfgang Hoschek
CERN IT Division

European Organization for Nuclear Research
1211 Geneva 23, Switzerland
wolfgang.hoschek@cern.ch

Abstract

In a large heterogeneous distributed system spanning
administrative domains such as a DataGrid, it is often
desirable to maintain and query dynamic and timely
information about active participants such as services,
resources and user communities. This paper develops a
suitable database and query model as well as a generic
and dynamic data model for such database systems.
Unlike in the relational model the elements of a tuple in
our data model can hold structured or semi-structured
data in the form of any arbitrary well-formed XML doc-
ument or fragment. An individual tuple element may,
but need not, have a schema (XML Schema), in which
case the content must be valid according to the schema.
The elements of all tuples may, but need not, share
a common schema. The concepts of (logical) query
and (physical) query scope are cleanly separated rather
than interwoven. A query is formulated against a global
database view and is insensitive to link topology and de-
ployment model. The query scope, on the other hand,
is used to navigate and prune the link topology and fil-
ter on attributes of the deployment model. Example
service discovery queries are given. Three query types
are identified, namely simple, medium and complex.
An appropriate query language (XQuery) is suggested.
The suitability of the query language is demonstrated by
formulating the example prose queries in the language.
Detailed requirements for a query language supporting
service and resource discovery are given. The capabili-
ties of various query languages are compared.

1 Introduction

In a large heterogeneous distributed system spanning
administrative domains such as a DataGrid [1, 2, 3, 4],
it is often desirable to maintain and query dynamic and
timely information about active participants such as
services, resources and user communities. Other exam-

ples are a (worldwide) service discovery infrastructure
for a multi-national organization, a Peer-to-Peer (P2P)
file sharing system, the Domain Name System (DNS),
the email infrastructure, a monitoring infrastructure or
an instant messaging and news service. As in a data
integration system [5, 6, 7], the goal is to exploit sev-
eral independent information sources as if they were a
single source. This enables information discovery and
collective collaborative functionality that operates on
the system as a whole, rather than on a given part of
it. In such a database system, the set of information
tuples in the universe is partitioned over one or more
nodes from a wide range of distributed system topolo-
gies, for reasons including autonomy, scalability, avail-
ability, performance and security. A database model is
required that clarifies the relationship of the entities in
a distributed system.

The distribution and location of tuples should be
transparent to a query. However, in practice, it is of-
ten sufficient (and much more efficient) for a query to
consider only a subset of all tuples (service descrip-
tions) from a subset of nodes. For example, a typical
query may only want to search tuples (services) within
the scope of the domain cern.ch and ignore the rest
of the world. Both requirements need to be addressed
by an appropriate query model.

A data model remains to be specified. It should
specify what kind of data a query takes as input and
produces as output. Due to the heterogeneity of large
distributed systems spanning many administrative do-
mains, the data model should be flexible in represent-
ing many different kinds of information from diverse
sources, including structured and semi-structured data.
The key problem then is:

• In a large heterogeneous distributed system span-
ning many administrative domains, what kind of
database, query and data model as well as query
language can support simple and complex dynamic

1

information discovery with as few as possible ar-
chitectural and design assumptions? How can one
uniformly support queries in a wide range of dis-
tributed system topologies and deployment models,
while at the same time accounting for their respec-
tive characteristics?

This paper answers the above question by develop-
ing a suitable database and query model as well as
a generic and dynamic data model. This paper is
organized as follows. Section 2 develops a database
and query model. The concepts of (logical) query
and (physical) query scope are cleanly separated rather
than interwoven. Section 3 proposes a generic and dy-
namic data model. The dynamic data model addresses
dynamic state maintenance problems. Here a tuple is
an annotated multi-purpose soft state data container
that may contain a piece of arbitrary content and al-
lows for refresh of that content at any time. Section 4
suggests XQuery [8] as an appropriate query language.
Section 5 formulates in prose a representative set of ex-
ample service discovery queries. Three query types are
identified, namely simple, medium and complex. The
suitability of the query language is demonstrated by
formulating the example prose queries in the language.
Section 6 compares our approach with related work.
Detailed requirements for a query language supporting
service and resource discovery are given. The capabili-
ties of various query languages are compared. Finally,
Section 7 summarizes and concludes this paper.

2 Database and Query Model

Database Model. A distributed database frame-
work is used where there exist one or more nodes. Each
node can operate autonomously. A node holds a set of
tuples in its database. A given database belongs to a
single node. For flexibility, the databases of nodes may
be deployed in any arbitrary way (deployment model).
For example, a number of nodes may reside on the
same host. A node’s database may be co-located with
the node. However, the databases of all nodes may
just as well be stored next to each other on a single
central data server. The database tuples may be dy-
namically (re) computed on each query. A database
may be anything that accepts queries from the query
model and returns results according to the data model
(see below).

The set of tuples in the universe is partitioned over
the nodes, for reasons including autonomy, scalability,
availability, performance and security. Nodes are in-
terconnected with links in any arbitrary way. A link
enables a node to query another node. A link topology

describes the link structure among nodes. The cen-
tralized model has a single node only. For example,
in a service discovery system, a link topology could tie
together a distributed set of administrative domains,
each hosting a registry node holding descriptions of
services local to the domain. Figure 1 depicts three
example link topologies, namely ring, tree and graph
(Peer-to-Peer). Depending on the application context,
all topologies have their merits and drawbacks.

Figure 1: Ring, Tree and Graph Topology [9].

Query Model. Our query model is intended for
read-only search. Insert, update and delete capabili-
ties are not required and not addressed. We have de-
fined these capabilities elsewhere [4, 10]. It is a general-
purpose query model that operates on tuples. Discus-
sion in this paper often uses examples where the term
tuple is substituted by the more concrete term service
description.

In practice, it is often sufficient (and much more effi-
cient) for a query to consider only a subset of all tuples
(service descriptions) from a subset of nodes. For ex-
ample, a typical query may only want to search tuples
(services) within the scope of the domain cern.ch and
ignore the rest of the world.

However, it is a strong user requirement that queries
should be as insensitive as possible to any link topology
and deployment model. In other words, a user should
not need to reformulate a query when the node topol-
ogy or deployment model changes, as is frequently the
case in large distributed systems spanning many ad-
ministrative domains such as P2P networks or cross-
organizational Grids. A query model should not make
any assumptions on the underlying database and query
processing technology. P2P query engines, distributed
database systems and centralized database systems
should be able to answer the same queries. As in a
data integration system, the goal is to exploit several
independent information sources as if they were a sin-
gle source. In support of these requirements, the con-
cepts of (logical) query and (physical) query scope are
cleanly separated rather than interwoven.

• Query. A query is formulated against a global

2

database view and is insensitive to link topol-
ogy and deployment model. In other words, to
a query the set of all tuples appears as a single ho-
mogenous database, even though the set may be
(recursively) partitioned across many nodes and
databases. This means that in a relational or XML
environment, at the global level, the set of all tu-
ples appears as a single, very large, table or XML
document, respectively.

• Query Scope. The query scope, on the other
hand, is used to navigate and prune the link topol-
ogy and filter on attributes of the deployment
model. Searching is primarily guided by the query.
Scope hints are used only as necessary. A query is
evaluated against a set of tuples. The set, in turn,
is specified by the scope. Conceptually, the scope
is the input fed to the query. The query scope is
a set and may contain anything from all tuples in
the universe to none.

A query scope is specified either directly or indi-
rectly. For example, one can directly enumerate the tu-
ples (service descriptions) to be considered. However,
this is usually impractical. One can also indirectly de-
fine a query scope by specifying a set of nodes (or Inter-
net domain names or table names), implying that the
query should be evaluated against the union of all tu-
ples contained in their respective databases. This cor-
responds to the concept of horizontally partitioned ta-
bles extensively used in large-scale relational database
systems, in particular for distributed instances [11].
One can also indirectly specify the query scope by giv-
ing a time deadline, implying that as many tuples as
possible should be considered, but only until the dead-
line has passed. Many more ways to specify a query
scope can be envisioned. Both query and scope can
prune the search space, but they do so in a very differ-
ent manner.

3 Dynamic Data Model

Generic Data Model. In a large distributed sys-
tem, a registry is populated from a large variety of
heterogeneous remote data sources. The input and out-
put of a query are instances of a generic data model,
which in our case is XML based and models a docu-
ment as a tree of nodes. XML [12] is used because one
of its strengths is its flexibility in representing many
different kinds of information from diverse sources, in-
cluding structured and semi-structured data. XML is,
above all else, a unifying integration technology.

The data model must be capable of modeling an
XML document as well as a well-formed fragment of

a document, a sequence of documents, or a sequence
of document fragments. We note that there is no need
to store tuples in XML; they just need to be presented
this way, perhaps by middleware. For example, it is
common to present data from relational databases, dy-
namic content generation systems and legacy command
line tools as XML. A more sophisticated system can ac-
cept queries over an XML view and internally translate
the query into SQL [13, 14, 15, 6].

The data model represents a set of tuples. A tuple
has, unsurprisingly, zero or more XML attributes and
zero or more XML elements.

In the relational model, a tuple has a number of col-
umn values. All tuples of all nodes are homogenous
in the sense that their column values comply with a
single strongly typed schema. In our model, this is
not required. The elements (columns) of a tuple can
hold structured or semi-structured data in the form of
any arbitrary well-formed XML document or fragment.
An individual tuple element may, but need not, have
a schema (XML Schema [16]), in which case the con-
tent must be valid according to the schema. The ele-
ments of all tuples may, but need not, share a common
schema. An element (column) is typed (type XML),
but obviously in a very loose manner. A tuple is a
multi-purpose data container that may contain arbi-
trary content. Unlike in a RDBMS, a single (logical)
tuple set contains all tuples. This implies that a query
need not specify a “table” or “tuple set name” to in-
dicate the type of tuples that should be considered.
Rather, predicates within the regular query language
are used to select the desired tuples from the single set.
Arguably, it is more appropriate to adopt XML par-
lance and also use the term element instead of tuple.
Nevertheless, continuing to use established terminol-
ogy from the relational world seems to improve clarity
more than it is misleading. Discussion in this paper of-
ten uses examples where the term tuple is substituted
by the more concrete term service description.

The actual query is fed as input an XML represen-
tation that has the following form.

<tupleset>

zero or more tuples go here

</tupleset>

The output of a predicate query (see below) is a
subset of its input. The output of a constructive query
(see below) is an arbitrary structure of the following
form.

<tupleset>

zero or more XML elements go here

</tupleset>

3

In any case, the query engine always encapsulates
the query output with a tupleset root element. A
user query need not generate this root element as it is
implicitly added by the environment.

Dynamic Data Model (DDM). In a large dis-
tributed system spanning many administrative do-
mains, a registry is populated from a large variety of
unreliable, frequently changing, autonomous and het-
erogeneous remote data sources. To address dynamic
state maintenance problems, we propose the Dynamic
Data Model (DDM), which is an instantiation of the
Generic Data Model. In DDM, a tuple is an annotated
multi-purpose soft state data container that may con-
tain a piece of arbitrary content and allows for refresh
of that content at any time, as depicted in Figure 2.

Content (optional)

Link Type Context Timestamps Metadata

HTTP GET(tuple.link) --> tuple.content
type(HTTP GET(tuple.link)) --> tuple.type

Tuple :=

Semantics :

Figure 2: Tuple Link allows for Refresh of Tuple Con-
tent at any time.

Examples for content include a service description,
file, picture, current network load, host information,
stock quotes, etc. Content of a given type is maintained
for a given context (purpose) and may optionally be
associated with some arbitrary shaped metadata. A
tuple and its content are valid for some time span only.
At any time, the current (up-to-date) content can be
retrieved from the authoritative content provider via
a dynamic pointer called a content link. The pointer
can be used if stale content is to be avoided. Detailed
motivation and justification is given in our prior studies
[10, 4].

The actual query is fed as input an XML represen-
tation that has the form depicted in Figure 3.

4 XQuery Language

XQuery [8, 17, 18, 19] is the standard XML [12] query
language developed under the auspices of the W3C. A
number of excellent introductions and compact sum-
maries of its features have already appeared [15, 8].
Therefore, here we only briefly mention some of the
more interesting features.

XQuery is designed to be a small, easily imple-
mentable language in which queries are concise and
easily understood. The language is derived from an

<tupleset TS4="100">

<tuple link="http://sched001.cern.ch/getDescription"

type="service" ctx="parent" TS1="10" TC="15"

TS2="20" TS3="30">

<content>

<service>

<interface type="http://cern.ch/Scheduler">

<operation>

<name>void submitJob(String job)</name>

<allow> http://cms.cern.ch </allow>

<bind:http verb="GET"

URL="http://sched.cern.ch/submitjob"/>

</operation>

</interface>

</service>

</content>

<metadata> <owner name="http://cms.cern.ch"/>

</metadata>

</tuple>

<tuple link="http://repcat.cern.ch/pub/getDesc?id=4711"

type="service" ctx="child" TS1="30" TC="0"

TS2="40" TS3="50">

</tuple>

<tuple link="http://monitor.cern.ch/pub/getHostInfo"

type="hosts" TC="65" TS1="60" TS2="70" TS3="80">

<content>

<hosts>

<host name="fred01.cern.ch" os="redhat 7.2"

arch="i386" mem="512M"/>

<host name="fred02.cern.ch" os="solaris 2.7"

arch="sparc" mem="8192M"/>

</hosts>

</content>

</tuple>

</tupleset>

Figure 3: Dynamic Tuple Set.

XML query language called Quilt [20], which in turn
borrowed features from several other languages. From
XPath [21] and XQL [22] it took a path expression syn-
tax suitable for hierarchical documents. From XML-
QL [23] it took the notion of binding variables and
then using the bound variables to create new struc-
tures. From SQL [24] it took the idea of a series of
clauses based on keywords that provide a pattern for
restructuring data (the SELECT-FROM-WHERE pat-
tern in SQL). From OQL [25] it took the notion of a
functional language composed of several different kinds
of expressions that can be nested with full generality
[8].

XQuery can dynamically integrate external data
sources via the document(URL) function. The
document(URL) function can be used to process
the XML results of remote operations such as
getNetworkLoad, invoked over HTTP. XQuery
uses XPath [21] expressions for hierarchical nav-
igation to parts of an XML document. The

4

document("http://mysite.org/med.xml")/record
expression returns the ordered list of all record
children of the root of the given document.
document("med.xml")//record returns the list
of record elements at any depth in the doc-
ument. Path predicates, interspersed in path
expressions, restrict the navigation; for example,
//entry[date="1/9/90"] returns all the entry
elements having at least one date child, whose string
values is "1/9/90" [15].

XQuery provides the usual set of first-order op-
erators (arithmetic, logical and set-oriented); the
comma is a list concatenation operator. For ex-
ample, (//entry, //name) returns the concatena-
tion of the list of all entries, followed by all names,
in document order. Second order operators in
XQuery are the logical quantifiers ANY, ALL, and SORT.
For example, document("med.xml")//entry SORTY
BY date DESC will return all entry elements, the most
recent first.

FLWR expressions (pronounced “flower”) consist of
three parts: a FOR-LET clause that makes variables it-
erate over the result of an expression or binds variables
to arbitrary expressions, a WHERE clause that allows
specifying restrictions on the variables, and a RETURN
clause that can construct new XML elements as output
of the query. For example, the following query retrieves
all the medical records of people with health problems
that have been related to pollution within the last ten
years [15]:

FOR $r in document("med.xml")//record,

$e in $r/entry

WHERE $e/date > "1/1/90" and

contains($e/diagnosis, "pollution")

RETURN <pollutionIncident>

$r/@ssNo, $e/diagnosis

</pollutionIncident>

5 Query Examples and Types

The suitability of the query language for service and
resource discovery is now demonstrated by formulating
example prose queries in the XQuery language. One
can distinguish three types of queries: simple, medium
and complex. The latter are more powerful than the
former. Nevertheless, we will see that even a simple
query is a powerful tool.

Simple Query. Simple queries are most often used
for discovery. A simple query finds all tuples (services)
matching a given predicate or pattern. The query vis-
its each tuple (service description) in a set individually,
and generates a result set by applying a function to

each tuple. The function usually consists of a predi-
cate and/or a transformation. Individual answers are
added to a (initially empty) result set. An empty an-
swer leaves the result set unchanged. A simple query
has the following form:

R = {}

for each tuple in input

R = R UNION { function(tuple) }

endfor

return R

Example simple queries are:

• (QS1) Find all (available) services.

RETURN /tupleset/tuple[@type="service"]

• (QS2) Find all services that implement a replica
catalog service interface that CMS members are
allowed to use, and that have an HTTP bind-
ing for the replica catalog operation “XML
getPFNs(String LFN).

LET $repcat := "http://cern.ch/ReplicaCatalog-1.0"

FOR $tuple in /tupleset/tuple[@type="service"]

LET $s := $tuple/content/service

WHERE

SOME $op IN $s/interface[@type = $repcat]/operation

SATISFIES ($op/name="XML getPFNs(String LFN)" AND

$op/bindhttp/@verb="GET" AND

contains($op/allow, "http://cms.cern.ch"))

RETURN $tuple

• (QS4) Find all local services (all service interfaces
of any given service must reside on the same host).

FOR $tuple in /tupleset/tuple[@type="service"]

LET $s := $tuple/content/service

WHERE count(distinct(hostname($s/interface/operation/

bindhttp/@URL))) <= 1

RETURN $tuple

• (QS5) Find all services and return their service
links (instead of descriptions).

FOR $tuple in $doc/tupleset/tuple[@type="service"]

RETURN <tuple> {$tuple/attribute::*} </tuple>

• (QS6) Find all CMS replica catalogs and return
their physical file names (PFNs) for a given logical
file name (LFN); suppress PFNs not starting with
“ftp://”.

LET $repcat := "http://cern.ch/ReplicaCatalog-1.0"

FOR $tuple in /tupleset/tuple[@type="service"]

LET $s := $tuple/content/service

WHERE

SOME $op IN $s/interface[@type = $repcat]/operation

SATISFIES ($op/name="XML getPFNs(String LFN)" AND

$op/bindhttp/@verb ="GET" AND

contains($op/allow, "http://cms.cern.ch"))

RETURN

5

FOR $pfn IN invoke($s, $repcat,

"XML getPFNs(String LFN)",

"http://myhost.cern.ch/myFile")

/tupleset/PFN

WHERE starts-with($pfn, "ftp://")

RETURN $pfn

Note that all but the last two queries return ser-
vice descriptions, whereas the latter return additional
or entirely different information (service links or phys-
ical file names). We term the former queries predicate
(or filter) queries. The structure of the result set is
predetermined in the sense that query output must be
a subset of query input. We term the latter queries
constructive queries, because they construct answers
of arbitrary structure and content. Predicate queries
are a subset of constructive queries. A constructive
query function that always returns "Hello World" or
an empty string is legal, but not very useful.

Further, note that the last query involve multiple
independent data sources and matches on dynamically
delivered content (via remote invocation of operations
getPFNs), rather than on values being part of service
descriptions. We call these queries dynamic queries, as
opposed to static queries. To support dynamic queries,
a query language must provide means to dynamically
retrieve and interpret information from diverse remote
or local sources.

Dynamic queries can sometimes be reformulated as
static queries. For example, the LFN/PFN database
information of query QS6 could be made available as
part of the tuple set. In practice, this is typically infea-
sible for reasons including database size, consistency,
information hiding, security and performance. Pub-
lishing highly volatile attributes such as CPU load as
part of tuples leads to stale data problems. Clearly
dynamic invocation is a more appropriate vehicle to
deliver CPU load. Alternatively, custom push proto-
cols can be used, for example as defined in the Grid
Monitoring Architecture [26].

Medium query. A medium query computes an
answer over a set of tuples (service descriptions) as a
whole. For example, it can compute aggregates like
number of tuples, maximum, etc. Example medium
queries are:

• (QM1) Find the CMS storage service with
the largest network bandwidth to my host
“dummy.cern.ch” (assuming there exists a service
estimating bandwidth from A to B).

LET $source := "dummy.cern.ch"

LET $storage := "http://cern.ch/storage-1.0"

LET $sorted := /tupleset/tuple[@type="service" AND

content/service/@owner="cms.org" AND

content/service/interface/@type=$storage]

SORTBY (bandwidth($source, host(./@link)))

RETURN $sorted[last()]

DEFINE FUNCTION bandwidth($src, $dst) {

document("http://net.cern.ch/estimate?src=",

$src,"&dst=",$dst)

}

• (QM2) Return the number of replica catalog ser-
vices.

LET $repcat := "http://cern.ch/ReplicaCatalog-1.0"

RETURN count(/tupleset/content/service

[interface/@type=$repcat])

• (QM3) Find the two CMS execution services with
minimum and maximum CPU load and return
their service description and load.

LET $exec := "http://cern.ch/executor-1.0"

LET $tuples := /tupleset/tuple[@type="service" AND

content/service/@owner="cms.org" AND

content/service/interface/@type=$exec]]

LET $sorted := FOR $tuple IN $tuples RETURN

<item>

{$tuple}

<load>

{invoke($tuple/content/service, $exec,

"String cpuLoad()", "")}

</load>

</item> SORTBY (load)

RETURN

<min> $sorted[1] </min>

<max> $sorted[last()] </max>

The query is applied to the set as a whole. For ex-
ample, QM3 is interesting in that it involves crossing
tuple boundaries, which simple hierarchical query lan-
guages typically do not support. Like a simple query,
a medium query can be static or dynamic. It can be a
predicate query or a constructive query.

Complex query. Complex queries are most often
used for advanced discovery or brokering. Like a
medium query, a complex query computes an answer
over a set of tuples (service descriptions) as a whole.
However, it has powerful capabilities to combine data
from multiple sources. For example, it supports all
database join flavors. Like any other query, a complex
query can be static or dynamic. It can be a predi-
cate query or a constructive query. Example complex
queries are:

• (QC1) Find all (execution service, storage service)
pairs where both services of a pair live within the
same domain. (Job wants to read and write lo-
cally).

LET $exeType := "http://cern.ch/executor-1.0"

LET $stoType := "http://cern.ch/storage-1.0"

6

FOR $exec IN /tupleset/tuple[content/service/

interface/@type=$exeType],

$stor IN /tupleset/tuple[content/service/

interface/@type=$stoType

AND domainName(@link) =

domainName($exec/@link)]

RETURN

<pair>

{$exec}

{$storage}

</pair>

• (QC2) Find all hosts that run more than one
replica catalog with CMS as owner. (Want to
check for anomalies).

LET $repcat := "http://cern.ch/ReplicaCatalog-1.0"

LET $hosts := /tupleset/tuple/hostname(@link)

[content/service[interface/@type = $repcat AND

content/service/@owner = "cms.org"]]

FOR host IN $hosts

RETURN <host> {$host} </host>

WHERE count(hosts[./ = $host]) > 1

6 Related Work

Let us assess the suitability of the query capabilities of
various query languages in the context of service and
resource discovery.

LDAP. The Lightweight Directory Access Protocol
(LDAP) [27] inherits its query and data model from
X.500 [28]. The data model is not dynamic and it is
not XML based. No example service discovery query
except QS1 and QS5 can be expressed with the LDAP
query language. This would also be the case if LDAP
were defined on an XML data model. An example sys-
tem using this query and data model is the Metacom-
puting Directory Service (MDS) [29, 30].

The data model is based on the entry, which con-
tains data about some object (e.g. a person). An entry
is composed of attributes, which have a type and one or
more values. The attribute type determines what kinds
of values are legal. An entry has a mandatory attribute,
which is a hierarchical identifier termed distinguished
name (DN). An example DN is cn=Barbara Jensen,
o=University of Michigan, c=US. Because of its hi-
erarchical nature, a DN can be seen as organizing a set
of entries into a tree structure, the Directory Informa-
tion Tree (DIT). Usually the tree is organized accord-
ing to political, geographical, or organizational bound-
aries. For comparison, an HTTP URL with the usual
attribute-value pairs can be considered equivalent to a
DN. An XML tuple with a content link corresponds to
an LDAP entry. A set of such tuples corresponds to a
set of LDAP entries. Both sets can be interpreted as

a tree. Operations are provided to query, add, modify,
and delete entries from the tree.

The LDAP query language has the following
capabilities. A query returns a set of matching
entries. A query can specify a base DN, scope, filter,
timeout, maximum result set size and the names of
attributes to return for each matching entry. The base
DN decides the position in the name space tree at
which the search should be started. An empty string
implies starting at the root of the tree. The scope
flag indicates which entries should be considered: just
the base DN entry, all immediate descendent entries
of the DN, or all entries at or below the DN. The
filter is applied to each entry selected by the scope.
A filter is an expression that logically compares (=,
<=, >=) the string value of an attribute (email) with
a string constant, optionally with a substring match
joker (picture*.jpg) and approximate string equality
test (∼). Filters can be combined with Boolean
AND, OR and NOT operators. For example, the query
o=anl.gov,c=US??persons?(&(cn=Mark*)(sn=G*))
returns every person entry whose name starts with
Mark and whose surname starts with “G”.

Clearly the expressive power of this language is in-
sufficient for service and resource discovery use cases
and most other non-trivial questions.

SQL. The relational data model is well suited for
static centralized systems. However, it is unsuitable
for a large distributed system spanning many admin-
istrative domains, populated from a large variety of
unreliable, frequently changing, autonomous and het-
erogeneous remote data sources. The relational data
model does not allow for semi-structured data. All
tuples must be homogenously structured in the sense
that their column values comply with a strongly typed
schema. Tuples with different schema belong to differ-
ent tables. Hence, a query cannot operate on a single
(logical) set containing all tuples. A query must have
out-of-band knowledge of the relevant table names and
schemas, which themselves may not be heterogeneous
but must be static, globally standardized and synchro-
nized. This seriously limits the applicability of the re-
lational model in the context of autonomy, decentral-
ization, unreliability and frequent change.

SQL [24] is a rich and expressive general-purpose
language defined over the relational data model. In
addition to the above limitations, SQL lacks hierarchi-
cal navigation as a key feature and other capabilities
such as dynamic data integration, expression nesting
with full generality as well as regular expression match-
ing. As a result, some example queries cannot be ex-
pressed (e.g. QS6, QM1, QM3) and most can only be

7

expressed with extremely complex queries over a large
number of auxiliary tables [15, 4]. The same holds for
inserts and updates.

The relational data model and SQL are, for example,
used in the Relational Grid Monitoring Architecture
(RGMA) system [31] and the Unified Relational GIS
Project [32].

Other. None of the example discovery queries can
be satisfied with a lookup by key (e.g. globally unique
name). This is the type of query assumed in most
P2P systems such as DNS [33], Gnutella [34], Freenet
[35], Tapestry [36], Chord [37] and Globe [38], lead-
ing to highly specialized content-addressable networks
centered around the theme of distributed hash table
lookup. Note further that almost no queries are exact
match queries (i.e. given a flat set of attribute values
find all tuples that carry exactly the same attribute
values), assumed in systems such as SDS [39] and Jini
[40]. They are also not fuzzy keyword searches, as used
in web search engines. Next, queries do not specify that
at most one result should be returned.

The limited expressiveness of the above mentioned
query languages allows for easy implementation and
some straightforward optimizations, but it also dra-
matically limits their applicability and ability to cope
with changing requirements, leading to a flurry of very
similar but not identical special-purpose systems, each
supporting yet another narrow custom query type.
These systems may well serve a special-purpose impor-
tant for a given niche, but are unsuitable for supporting
service discovery, let alone ubiquitous service and re-
source discovery for a wide range of applications and
user communities.

The greater the number and heterogeneity of con-
tent and applications, the more important expressive
general-purpose query capabilities become. Clearly re-
alistic ubiquitous service and resource discovery stands
and falls with the ability to express queries in a rich
general-purpose query language. More precisely, a
query language suitable for service and resource dis-
covery should meet the requirements stated in Figure
4 (in decreasing order of significance). As can be seen
from the table, LDAP, SQL and XPath do not meet a
number of essential requirements, whereas the XQuery
language meets all requirements and desiderata posed.

7 Conclusions

This paper develops a database and query model as
well as a generic and dynamic data model that ad-

dress the problems of large heterogeneous distributed
system spanning many administrative domains. Un-
like in the relational model the elements of a tuple in
our data model can hold structured or semi-structured
data in the form of any arbitrary well-formed XML
document or fragment. An individual tuple element
may, but need not, have a schema (XML Schema),
in which case the content must be valid according to
the schema. The elements of all tuples may, but need
not, share a common schema. The concepts of (logi-
cal) query and (physical) query scope are cleanly sep-
arated rather than interwoven. A query is formulated
against a global database view and is insensitive to
link topology and deployment model. The query scope,
on the other hand, is used to navigate and prune the
link topology and filter on attributes of the deployment
model.

Example service discovery queries are given. Three
query types are identified, namely simple, medium and
complex. An appropriate query language (XQuery) is
suggested. The suitability of the query language is
demonstrated by formulating the example prose queries
in the language. Detailed requirements for a query
language supporting service and resource discovery are
given. The capabilities of various query languages are
compared.

References
[1] Ian Foster, Carl Kesselman, and Steve Tuecke. The

Anatomy of the Grid: Enabling Scalable Virtual Organi-
zations. Int. Journal of Supercomputer Applications, 15(3),
2001.

[2] Ben Segal. Grid Computing: The European Data Grid
Project. In IEEE Nuclear Science Symposium and Med-
ical Imaging Conference, Lyon, France, October 2000.

[3] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar,
Heinz Stockinger, and Kurt Stockinger. Data Management
in an International Data Grid Project. In 1st IEEE/ACM
Int. Workshop on Grid Computing (Grid’2000), Bangalore,
India, December 2000.

[4] Wolfgang Hoschek. A Unified Peer-to-Peer Database
Framework for XQueries over Dynamic Distributed Con-
tent and its Application for Scalable Service Discovery.
PhD Thesis, Technical University of Vienna (submitted),
2002.

[5] J.D. Ullman. Information integration using logical views.
In Int. Conf. on Database Theory (ICDT), Delphi, Greece,
1997.

[6] Daniela Florescu, Ioana Manolescu, Donald Kossmann, and
Florian Xhumari. Agora: Living with XML and Relational.
In Int. Conf. on Very Large Data Bases (VLDB), Cairo,
Egypt, February 2000.

[7] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to
heterogeneous data sources with DISCO. IEEE Transac-
tions on Knowledge and Data Engineering, 10(5):808–823,
1998.

8

Capability XQuery XPath SQL LDAP

Simple, medium and complex queries over a set of tuples yes no yes no
Query over structured and semi-structured data yes yes no yes
Query over heterogeneous data yes yes no yes
Query over XML data model yes yes no no
Navigation through hierarchical data structures (Path Expressions) yes yes no exact match

only
Joins (combine multiple data sources into a single result) yes no yes no
Dynamic data integration from multiple heterog. sources such as databases,
documents and remote services

yes yes no no

Data restructuring patterns (e.g. SELECT-FROM-WHERE in SQL) yes no yes no
Iteration over sets (e.g. FOR clause) yes no yes no
General-purpose predicate expressions (WHERE clause) yes no yes no
Nesting several kinds of expressions with full generality yes no no no
Binding of variables and creating new structures from variables (LET clause) yes no yes no
Constructive queries yes no no no
Conditional expressions (IF . . . THEN . . . ELSE) yes no yes no
Arithmetic, comparison, logical and set expressions yes, all yes yes, all log. & string
Operations on data types from a type system yes no yes no
Quantified expressions (e.g. SOME, EVERY clause) yes no yes no
Standard functions for sorting, string, math, aggregation yes no yes no
User defined functions yes no yes no
Regular expression matching yes yes no no
Concise and easy to understand queries yes yes yes yes

Figure 4: Capabilities of XQuery, XPath, SQL and LDAP query languages.

[8] World Wide Web Consortium. XQuery 1.0: An XML Query
Language. W3C Working Draft, December 2001.

[9] Nelson Minar. Peer-to-Peer is Not Always Decentralized. In
The O’Reilly Peer-to-Peer and Web Services Conference,
Washington, D.C., November 2001.

[10] Wolfgang Hoschek. A Database for Dynamic Distributed
Content and its Application for Service and Resource Dis-
covery. In Int. IEEE Symposium on Parallel and Dis-
tributed Computing (ISPDC 2002) (to appear), Iasi, Ro-
mania, July 2002.

[11] Donald Kossmann. The state of the art in distributed query
processing. ACM Computing Surveys, September 2000.

[12] World Wide Web Consortium. Extensible Markup Lan-
guage (XML) 1.0. W3C Recommendation, October 2000.

[13] Dan Suciu. On Database Theory and XML. SIGMOD
Record, 30(3), 2001.

[14] Mary Fernandez, Morishima Atsuyuki, Dan Suciu, and Tan
Wang-Chiew. Publishing Relational Data in XML: the
SilkRoute Approach. IEEE Data Engineering Bulletin,
24(2), 2001.

[15] Daniela Florescu, Ioana Manolescu, and Donald Kossmann.
Answering XML Queries over Heterogeneous Data Sources.
In Int. Conf. on Very Large Data Bases (VLDB), Roma,
Italy, September 2001.

[16] World Wide Web Consortium. XML Schema Part 0:
Primer. W3C Recommendation, May 2001.

[17] World Wide Web Consortium. XML Query Use Cases. W3C
Working Draft, December 2001.

[18] World Wide Web Consortium. XML Query Requirements.
W3C Working Draft, February 2001.

[19] World Wide Web Consortium. XQuery 1.0 and XPath 2.0
Functions and Operators. W3C Working Draft, December
2001.

[20] Don Chamberlin, Jonathan Robie, and Daniela Florescu.
Quilt: an XML Query Language for Heterogeneous Data
Sources. Lecture Notes in Computer Science, 42(7), De-
cember 2000.

[21] World Wide Web Consortium. XML Path Language
(XPath) Version 1.0. W3C Recommendation, November
1999.

[22] J. Robie, J. Lapp, and D. Schach. XML Query Lan-
guage (XQL). In The Query Languages Workshop (QL’98),
Boston, Massachussets, December 1998.

[23] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Su-
ciu. A Query Language for XML. In Eighth Int. World Wide
Web Conference, 1999.

[24] International Organization for Standardization (ISO). In-
formation Technology-Database Language SQL. Standard
No. ISO/IEC 9075:1999, 1999.

[25] Rick Cattell et al. The Object Database Standard: ODMG-
93, Release 1.2. Morgan Kaufmann Publishers, San Fran-
cisco, 1996.

[26] Brian Tierney, Ruth Aydt, Dan Gunter, Warren Smith,
Valerie Taylor, Rich Wolski, and Martin Swany. A
Grid Monitoring Architecture. Technical report, Grid
Forum Working Draft GWD-Perf-16-2, January 2002.
http://www.gridforum.org.

[27] W. Yeong, T. Howes, and S. Kille. Lightweight Directory
Access Protocol. IETF RFC 1777, March 1995.

[28] International Telecommunications Union. Recommendation
X.500, Information technology – Open System Interconnec-
tion – The directory: Overview of concepts, models, and
services. ITU-T, November 1995.

[29] Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl
Kesselman. Grid Information Services for Distributed
Resource Sharing. In Tenth IEEE Int. Symposium on

9

High-Performance Distributed Computing (HPDC-10), San
Francisco, California, August 2001.

[30] Steven Fitzgerald, Ian Foster, Carl Kesselman, Gregor von
Laszewski, Warren Smith, and Steven Tuecke. A Direc-
tory Service for Configuring High-Performance Distributed
Computations. In 6th Int. Symposium on High Perfor-
mance Distributed Computing (HPDC ’97), 1997.

[31] Steve Fisher et al. Information and Monitoring (WP3)
Architecture Report. Technical report, DataGrid-03-D3.2,
January 2001.

[32] W. P. Dinda and B. Plale. A Unified Relational Approach
to Grid Information Services. Technical report, Grid Fo-
rum Informational Draft GWD-GIS-012-1, February 2001.
http://www.gridforum.org.

[33] P. Mockapetris. Domain Names - Implementation and Spec-
ification. IETF RFC 1035, November 1987.

[34] Gnutella Community. Gnutella Protocol Specification v0.4.
dss.clip2.com/GnutellaProtocol04.pdf.

[35] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. In Workshop on Design Issues in Anonymity and
Unobservability, 2000.

[36] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-resilient wide-area location and rout-
ing. Technical report, U.C. Berkeley UCB//CSD-01-1141,
2001.

[37] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In ACM SIGCOMM, 2001.

[38] M. van Steen, P. Homburg, and A. Tanenbaum. A wide-area
distributed system. IEEE Concurrency, 1999.

[39] Steven E. Czerwinski, Ben Y. Zhao, Todd Hodes, An-
thony D. Joseph, and Randy Katz. An Architecture for
a Secure Service Discovery Service. In Fifth Annual Int.
Conf. on Mobile Computing and Networks (MobiCOM ’99),
Seattle, WA, August 1999.

[40] J. Waldo. The Jini architecture for network-centric com-
puting. Communications of the ACM, July 1999.

10

